
RackCC: Rack-level Congestion Control

Danyang Zhuo, Qiao Zhang, Vincent Liu†, Arvind Krishnamurthy, Thomas Anderson
University of Washington, University of Pennsylvania†

{danyangz,qiao,vincent,arvind,tom}@cs.washington.edu

ABSTRACT
Many data center traffic patterns exhibit abundant concurrent
connections and high churn. In the face of these character-
istics, server-centric congestion control is a poor fit—each
connection, no matter how small, must start from scratch
testing when and how much to send along a given path. This
is despite the fact that there are a large number of flows that
may have already probed the exact same path, not just at
a server level, but also at a rack level. Thus, we argue for
rack-level congestion control in which all connections are tun-
neled through rack-to-rack JumboFlows. This design allows
an entire rack’s connections to cooperate with one another for
better fairness and performance, particularly for short flows.

In this paper, we examine situations in which JumboFlows
might be useful and present a preliminary design of a system
(RackCC) that implements JumboFlows.

1. INTRODUCTION
At any given time, a server in a large data center might

have up to 100s or 1000s of concurrent connections [4, 16]
most of which are short-lived and bursty. In the face of abun-
dant flows and churn, TCP is a poor fit: every connection
operates in a bubble and ignores the congestion information
gleaned by previous and current flows. While TCP is simple,
well-understood, and able to eventually converge to max-min
fairness, the pathological nature of some data center traffic
patterns expose several inefficiencies:

• Long ramp-up times: Every new connection begins with a
clean slate. In TCP, this involves starting at a (somewhat
arbitrary) fixed initial window and adjusting up/down to
the desired throughput over the course of several RTTs.
Short-lived connections suffer from these ramp-up times.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from per-
missions@acm.org.

HotNets-XV, November 09-10, 2016, Atlanta, GA, USA
© 2016 ACM. ISBN 978-1-4503-4661-0/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/3005745.3005772

• Uneven bandwidth allocation: Connections that experience
loss or explicit congestion notification (ECN) are each
independently responsible for decreasing their own load
in the network. In a steady state, all flows are throttled
equally through randomness. However, if the flows are
short, affected connections are inordinately penalized.

• Disjoint behavior: Because connections operate indepen-
dently of one another, aggregate behavior can be problem-
atic. The classic example of this is TCP incast, where many
connections, oblivious of one another, send a synchronized
burst of packets to single destination that overloads the
network and causes high loss rates and timeouts.

All of these issues get worse as network bandwidth contin-
ues to grow while per-core CPU performance plateaus. This
is in addition to the power-efficiency-based push for more
and more CPUs per rack [15]. In either case, the end result is
more connections per path.

In this paper, we make a simple observation: that for any
new connection on any given network path, a great deal of
connections have already probed the exact same path, not just
at a server level, but at a rack level as well. Therefore, we
argue that many data center deployments would benefit from
connection pooling at the level of entire racks.

Recent measurement studies suggest that such a level of
aggregation may be effective for many deployments. For in-
stance, many data centers have a fair degree of locality within
clusters [16, 17] and sometimes racks [6]. In these cases, as
much as 75% of a rack’s flows end at the same destination
server [16]—a number that may be higher if we aggregate
destinations at a rack level. This is despite some existing
server-level connection pooling. Even in multi-tenant data
centers, the set of communication partners of any given server
or rack is only a small subset of the entire data center [9].

We propose to tunnel connections that share a source and
destination rack through a single, long-running, ToR-ToR,
TCP-like JumboFlow. In a sense, the JumboFlow allows us to
make use of TCP’s congestion control protocol for that which
it was designed: ensuring fair share and good performance
among long-running flows.

In addition to improving aggregate rack-to-rack through-
put, rack-level congestion control also addresses the issues
introduced above. Much like a SPDY [1] connection, a Jum-

http://dx.doi.org/10.1145/3005745.3005772

boFlow improves the ramp-up time of short flows by virtue of
the JumboFlow being more persistent. Within a JumboFlow,
new subflows can immediately take their share of the current
congestion window, eliminating long startup times and facili-
tating fairness. In addition, when a loss occurs, all subflows
back off an equal amount.

The primary challenge in designing such a system is one of
coordination: servers must be able to cooperatively arrive at a
congestion window that responds to each and every new ACK
and subflow. This information sharing must have low com-
munication overhead and should operate without requiring
complex logic or massive buffers at the ToRs.

Our primary contribution is to show that such a system is
feasible with limited switch support in the form of a small
amount of additional counters and state. To this end, we
present a preliminary design of a system, RackCC, that fa-
cilitates coordination between flows within a rack. RackCC
is able to emulate the aggregate behavior of an entire rack’s
TCP connections, but with more fairness within the rack.
Thus, our design is TCP-friendly with legacy racks.

2. THE CASE FOR RACKCC
A typical data center network is highly structured. Tens

to hundreds of thousands of servers are stacked in physical
racks. In each rack or small set of racks, servers connect to
a single Top-of-Rack (ToR) switch, which serves as their
gateway to the rest of the network. The ToRs serve as leaves
in a multi-rooted, multi-level tree interconnection network.

Traditional congestion control protocols ignore the struc-
tured layout of servers in the network. From the many vari-
ants of TCP [11] to more recent protocols like CUBIC [10],
DCTCP [4] to network-assisted protocols like RCP [8], and
XCP [13], each of these proposals treats every flow as inde-
pendent. In a network with unpredictable traffic patterns, this
promotes simplicity and effective handling of any usage sce-
nario. In a highly-engineered, high-performance data center,
it can also lead to inefficiency.

To see why, imagine we have an existing TCP connection
between two racks. Assuming the connection is more than
a few RTTs old, it will be much closer to its optimal rate
than a flow that is just starting out. When a server creates
a new connection between the same two racks, traditional
TCP would ignore the congestion information gathered by
the existing flow. Instead, the new flow would re-probe the
path’s bandwidth from scratch. If flows are short or arrive
frequently, throughput will suffer.1

When a drop does occur, only a single connection slows
down while others on the same path continue to speed up.
Ideally, all of the flows that share the bottleneck will slow
down equally. While TCP can achieve this using randomness
over long time periods, convergence is again often too slow
for short flows, which contributes to higher tail latencies for

1Note also that maintaining persistent TCP connections between
communicating endpoints doesn’t help as the TCP slow start mecha-
nism kicks in for data sent over idle connections.

Figure 1: RackCC Architecture. ToRs keep several con-
sistent JumboFlow connections to other ToRs. Applica-
tions start subflows that are multiplexed into one of the
JumboFlows. Subflows inside the same JumboFlow share
congestion information with each other.
the few connections that experience losses.

Our basic approach in this paper is to aggregate congestion
control among flows that traverse the same ToR-to-ToR path.
Note that rack-level congestion control may not be effective
for all data center deployments. Indeed, the efficacy of this
approach is heavily dependent on the amount of rack-level
path sharing and workload of the system. However, we do
note that there are at least some deployments for which this
approach will be useful. A prime example is a data center
where operators collocate machines with similar purposes
within the same racks. For instance, if several racks are set
aside for data analytics (e.g., MapReduce), one would expect
a great deal of redundant rack-level paths between racks.

3. RACKCC DESIGN
RackCC is a system that implements rack-level congestion

control using ToR-ToR JumboFlows. Our design is motivated
by three main goals:

1. Fast flow start: when a new flow begins, it should utilize
existing information about the congestion of the network.
In particular, existing flows should make room for the new
flow to take its fair share immediately. A fast flow start
avoids costly multi-RTT bandwidth probing.

2. Fate-sharing of flows: When congestion occurs, all sub-
flows on the same rack-to-rack path should slow down
simultaneously. This promotes fairness among flows.

3. Collaborative congestion detection: ToR-to-ToR conges-
tion should be detected and handled collaboratively by all
members of a JumboFlow. Detection is more accurate as
a result, alleviating problems such as TCP incast.

In RackCC, distributed applications still create individual
connections between one another, but then wrap these sub-
flows within ToR-ToR JumboFlows. Each endpoint will coor-
dinate with the other endpoints sourcing subflows within the
same JumboFlow to agree on fair sending rates. Essentially,
each JumboFlow contains one or more subflows, and multi-
ple JumboFlows connect each communicating rack. A high-
level diagram of this architecture is illustrated in Figure 1.

Note, however, that we do not change the TCP interface—
coordination between endpoints is entirely transparent.

Note that our proposal only seeks to aggregate congestion
control. TCP has many other features that are not included
in this. Servers are therefore still responsible for detecting
packet drops and retransmitting dropped packets.

Given a JumboFlow-based architecture, there are two ques-
tions we must answer: (1) how do we set the rate of a Jum-
boFlow in a way that is simple to implement and scales well
to high flow counts? and (2) how do subflows share a Jum-
boFlow given that their bottlenecks and demands may vary?
Our design borrows ideas about congestion control from ex-
isting TCP variants like DCTCP [4] as well as bandwidth
allocation from proposals like EyeQ [12] and RCP [8], but
composes them in a new and interesting way.

In the remainder of this section, we describe our prelimi-
nary system design. We begin by discussing how to imple-
ment congestion control for JumboFlows in the absence of
varying demand and packet loss at the server-ToR access
links. We then describe how subflows split the bandwidth
provided by their parent JumboFlow.

3.1 JumboFlow Congestion Control
As much as possible, we want the aggregate behavior of

an N-subflow JumboFlow to emulate the aggregate behavior
of N DCTCP [4] flows. The choice of DCTCP is deliberate—
several of its design decisions are particularly amenable to
rack-level coordination.

Of particular note is DCTCP’s reliance on Explicit Con-
gestion Notification (ECN)—a mechanism in which interme-
diate switches notify sources of congestion in the network
by explicitly marking packets—as the primary indicator of
congestion. RackCC relies on this same indicator for con-
trolling JumboFlow congestion. Upon receipt of a packet,
every switch except the last hop (i.e., the destination’s ToR
switch) will check the queue occupancy of the outgoing link.
If the queue has more than K bytes of data, the new packet
is marked. Destination servers will echo back this marker to
inform the source rack of congestion. This mechanism is a
good fit for rack-level congestion control because keeping
track of ECN rates requires very little state in the switch as
opposed to keeping a record of packets to track loss rates.

Determining the aggregate rate of a JumboFlow. Before
we discuss how we utilize ECN to set the rate of individual
subflows, we first describe the desired aggregate behavior of a
JumboFlow. Assume we have N subflows of which N′ are bot-
tlenecked by their share of the JumboFlow (as opposed to be-
ing bottlenecked by the source-ToR or ToR-destination access
links). In each round, some number of packets are marked.
The source ToR maintains an exponentially-weighted moving
average, α , of the fraction of packets that are marked. The
desired aggregate rate for the next RTT is then:

Ftarget ←

{
Fcur +N′r, if α = 0
Fcur× (1− α

2), if α > 0

In the first case, when there are no marked packets, r is scal-
ing factor that determines the aggressiveness of the conges-
tion control algorithm. To make JumboFlow fair to standard
DCTCP, we assume r = MSS

RTT .

Implementing JumboFlows. To ensure that servers obey the
above target rate, most of the heavy lifting is done on the end
hosts. In fact, ToRs in our system only need to implement a
simple counter-based interface that is similar to functionality
that already exists. In particular, we assume the ToR keeps
track of the counters in Table 1 and broadcasts them to its
servers at frequent intervals.

Using the value of α provided by the ToR, servers set a
subflow’s congestion window using the following equation.
Note that ‘unconstrained’ means that the subflow is not bot-
tlenecked by either access link. We describe how servers
discover this property in Section 3.2.

ftarget ←

fcur + r, if α = 0 & unconstrained
fcur, if α = 0 & constrained
fcur× (1− α

2), if α > 0

This differs from DCTCP in a few ways: (1) α represents
the ECN rate on the ToR-ToR path only, thus it does not take
into account congestion on access links (2) α is a more accu-
rate measure of congestion on the ToR-to-ToR path because
it is taken across many subflows, (3) α is applied across all
subflows equally. All of these contribute to faster, more fair
convergence to max-min fairness on the ToR-ToR path.

3.2 Subflow Congestion Control
In the previous subsection, we described how individual

subflows react to inter-ToR congestion information to emu-
late many DCTCP connections. However, these subflows are
not all equal as different subflows may be bottlenecked by
different access links or have different demands. In general,
this problem requires multiple rounds of global coordination
since subflows from different JumboFlows can compete for
the same access links. Our solution is to have end hosts itera-
tively negotiate each subflow’s fair share using mechanisms
similar to that of RCP [8] or EyeQ [12].

To this end, each server has a sender module and a receiver
module. The server’s sender module is responsible for setting
the sending rate of every subflow that originates from it. To
do so, sender modules maintain a running estimate of the
approximate rate at which local applications are offering
traffic. They then compute the ideal rate by negotiating with
connected receiver modules as well as the source’s ToR.

Determining the ideal rate for each subflow. At any given
time, a subflow’s share of the ToR-ToR path is ftarget . If we
assume that JumboFlows effectively handle congestion in the
ToR-ToR path, then the subflow can ignore congestion in the
middle of the network, provided it stays under ftarget . The
subflow’s ideal rate is thus primarily dependent on its fair
share of the source and destination link. We handle these two
bottlenecks differently.

Notation Definition Section
α An exponentially-weighted moving average of a JumboFlow’s ECN rate. 3.1
M The number of new subflows. 3.3
N The number of registered subflows. 3.3
T The average total throughput. 3.3

Table 1: The per-JumboFlow state maintained by each JumboFlow’s source ToR.

Destination. The destination periodically advertises a rate
Dtarget to all connected sources. This rate is recursively up-
dated periodically using an RCP/EyeQ-like formula:

Dtarget ← Dcur(1+
k · (C− y)− k′ · Q

d
C

)

where d is the control interval, C is the link capacity of ToR-
server access link, y the measured throughput in the last
control interval, Q is the persistent queue size and k, k′ are
stability constants. The destination server knows all these
variables except Q; the ToR needs to periodically commu-
nicate Q to its servers. The intuition behind this formula is
as follows. If the destination is underutilized, the residual
capacity (C− y) will be high and the persistent queuing term
Q
d will be low, resulting in an increase in D. If the destina-
tion is congested, (C− y) will approach zero while persistent
queuing rises, resulting in a decrease in the target rate.

Note that the destination broadcasts the same value of
Dtarget to all connected sources regardless of their demands
and bottlenecks. The control loop efficiently arrives at max-
min fairness by bounding the maximum rate of any subflow—
all other flows proceed at their fastest rate.

Source. For a given subflow, the source now has both ftarget ,
the subflow’s share of its JumboFlow, and Dtarget , the desti-
nation’s maximum allowable rate. From these two values, the
source will set the subflow’s maximum allowable rate:

starget ←min(ftarget ,Dtarget)

Now armed with starget for every one of its subflows, the
source will decide which packets to send next using fair queu-
ing and a rate limit of starget for each subflow. This mecha-
nism ensures max-min fairness, regardless of each subflow’s
demands and bottlenecks, and it is performed at the server
without requiring switch support. As a concrete example, con-
sider a case where a source with a 10 GbE connection has
three subflows that have starget values of 2, 6, and 10 Gbps.
Fair queuing will rotate between the three such that each
subflow receives 2, 4, and 4 Gbps, respectively.

Recall that in Section 3.1, we assumed that sources could
determine whether they were bottlenecked at an access link or
by the JumboFlow. With the above protocol, this information
is easy to derive. If the final, observed rate of the subflow is
ftarget , it is bottlenecked by its JumboFlow. Otherwise, it is
not and the source should not increase ftarget .

3.3 Fast Start and Fast End
Now that we have described how connections adjust their

sending rate to account for congestion in either a JumboFlow
or an access link, we now discuss what happens when con-
nections first start up or end.

In traditional TCP, new connections start at some small, ini-
tial window size and slowly ramp up from there. In RackCC,
we instead attempt to jump start new flows to their fair share
right away. In essence, we prioritize new flows over existing
ones because new flows are more likely to be short. To imple-
ment this, both the access links and the JumboFlow need to
make room for the new subflow.

Access Links. When a new flow begins, the source and desti-
nation servers both function normally. The destination, upon
receiving a SYN packet, will simply return its existing Dtarget
value. The source, upon receiving Dtarget and its initial ftarget
(described below), will utilize fair queuing exactly as before.
A flow end is handled similarly: the destination relies on its
control loop to manage Dtarget , while the source removes the
subflow from its fair queue.

For both ends of the connection, high churn is fine as
long as the churn involves similarly-sized flows. If there is a
sudden burst or dearth in flow quantity and size, there will be
temporary congestion, but as in RCP, the congestion control
protocol will quickly converge to address the issue.

JumboFlows. For the JumboFlow, the source’s ToR can de-
tect the beginning of a new connection by capturing the des-
tination’s initial SYN response and/or Dtarget advertisement.
Its goal at that point is to give the new subflow its fair share
of the JumboFlow and reduce the share of the other subflows.
More specifically, when M new subflows join the JumboFlow:

1. Each new subflow should get 1
N+M of the JumboFlow.

This means that each of the N existing flows should back
off by a factor of M

N+M .

2. Inform the source of its initial ftarget : T
N+M .

3. N← N +M.

When a connection ends, the server must unregister the
subflow in the ToR to decrease N by 1. Even with high churn
and very short flow sizes, JumboFlows remain relatively sta-
ble. Servers do not need to be informed of every update
immediately and can handle them in batches. In addition,
adding/removing flows is efficient because servers only need
to query and account for M, N, T alongside its queries for
α rather than needing to have a separate process for every
connection start and stop.

Note that a side effect of this scheme is that it encour-
ages short flows. Long-running, bursty connections are in-

(a) Num of Subflows = 2 (b) Num of Subflows = 10

Figure 2: Comparison of RackCC’s Fast Start and TCP’s
slow start. This graph plots the average speedup of a new
flow placed in the midst of many existing flows. Results
are shown for a range of fixed new flow sizes, number of
existing subflows, and Fast Start communication latency.
centivized to register and unregister themselves depending
on demand. Doing so gives them the same performance ben-
efits as short connections in RackCC. This is in contrast to
traditional TCP, where idle connections must fall back into
slow start every time. Also note that this process does not
necessarily involve the OS—registering and unregistering is
a purely transport-layer concern.

4. EVALUATION
To evaluate the efficacy of RackCC in addressing the in-

efficiencies of traditional TCP protocols, we a combination
of analysis and packet-level simulations. There are two ques-
tions we sought to answer:

• Can RackCC quickly ramp-up flows?
• Does sharing congestion information make allocation more

fair and efficient?

4.1 Speed of Fast Start
Fast Start allows connections in RackCC to ramp up im-

mediately to their fair share of the network. We use a simple
model to quantify the the relative speed up between RackCC’s
Fast Start and TCP’s slow start mechanisms. We assume that
RackCC computes and advertises each flow’s fair share after
a fixed amount of time. This is as opposed to TCP slow start,
which doubles its window every RTT from initial window
of 6 KB until the rate matches subflow’s fair share. Each
subflow’s rate should be stable around its fair share.

The benefit of Fast Start depends on many factors including
the traffic pattern, size of the new subflow, and the latency to
determine the fair share of the new subflow. We ran this exper-
iment with many configurations to evaluate how these param-
eters affect the speedup of RackCC versus traditional TCP.
We draw JumboFlow’s existing bandwidth throughput from
an exponential distribution from previous measurements [6].
The results are plotted in Figure 2. As expected, the size of
the new flow matters, and RackCC provides a better speedup
for short flows because it removes TCP’s need to reprobe
the path. For long flows, the latency of TCP’s slow start is
amortized. The latency for RackCC to determine fair share
also matters. If server takes 1 RTT to compute the fair share,

we achieve a 3.2× speedup for short flows. If server takes
3 RTTs to compute the fair share, we only provide a 1.3×
speedup for the same flows. Finally, when the number of
subflows in the JumboFlow is larger, the target throughput for
the new subflow is smaller and thus RackCC has a smaller
speedup because the it takes fewer RTTs for TCP to converge
to the steady state.

4.2 Effect of Cooperation
In RackCC, connections cooperate with other connections

in the same rack in order to achieve more accurate, fairer con-
gestion detection and handling. To quantify the effect of this
inter-flow aggregation, we ran an event-driven, packet-level
simulator. Switches in our simulator use standard drop-tail
queues with a per-port buffers based on the bandwidth-delay
product of the network. The network is a three level FatTree
with a total network latency of around 60 us and an aggres-
sive min-RTO of 200 us. In this network, we implemented a
JumboFlow and its congestion logic. As a comparison, we
also implemented standard DCTCP [4]. In both cases the
ECN threshold is set to be 1⁄6 of the total queue length.

Our small test had five servers in the same rack send equal
amounts of traffic to five other servers in a different rack. All
the flows are within a single JumboFlow. Figure 3 shows
the speed up of the tail flow completion time for RackCC
comparing to DCTCP.

Because every DCTCP flow tries to estimate congestion
using its own ACKs, every flow has a different estimation
and thus a different speed. This causes tail latency to suffer.
In RackCC, on the other hand, all the subflows use a single,
shared ECN rate. This reduces the tail completion time of the
set of flows especially in the case of short flows. The amount
of speed up varies across different configurations. When we
test one parameter, we keep other parameters at their default
values (number of subflows = 25, ECN aggregation period
= 10 us, per-subflow flow size = 150 KB). Figure 3a shows
that when the total number of subflows increases, the speed
up decreases. Figure 3b shows that speed up decreases when
as the ECN aggregation period decreases since the ECN
information becomes increasingly stale. Figure 3c shows
that when flow sizes increase, speedup increases and then
plateaus.

5. DISCUSSION
What we have described thus far is a system that replaces

TCP’s congestion control protocol. Flow control and error
detection can be layered on top of this system exactly as they
are in traditional TCP except that flow control is rate based,
rather than window based. Reliability can be incorporated
independently of the switches as well, as every packet still
has a sequence number. Thus, dup-acks, timeouts and similar
mechanisms are still an effective way to detect drops.

Coexistence with UDP RackCC applies congestion control
to all connections, including UDP flows. Note that this means
a UDP flow will need to register and unregister themselves

(a) (b) (c)

Figure 3: Job completion time speed up by sharing ECN rate across subflows.

with their ToR and communication partner. However, other
than that, UDP retains its properties and is therefore still
suitable for traffic that does not require reliable transmission,
ordering, etc.

Querying ToR State The fast convergence of the RackCC
relies on fast responses from switches. JumboFlow statistics
can be queried in-band via any customizable protocol, e.g.
SNMP. Throughput can already be estimated using high-
resolution switch counters. P4 [7] can be used to specify a
hardware pipeline in the switch to calculate the ECN rate and
registration values. In addition, P4 can specify a customized
packet header to transmit ToR state to servers.

Adaptive Load Balancing Exposing JumboFlow congestion
levels to end hosts has other potential benefits. The most
obvious benefit is that RackCC can be an easy way to imple-
ment clever adaptive load balancing algorithm by picking a
particular JumboFlow to join given the presence of multiple
redundant paths between ToRs. We can emulate CONGA [3]
by always choosing the least congested JumboFlow.

6. RELATED WORK
Data center congestion control is a well-studied topic. Cur-

rently, TCP [11] and its variants dominate both the data center
and wide area network. Of particular note are recent proposals
like DCTCP [4] and MPTCP [18], which seek to address long-
standing issues with TCP. DCTCP is a TCP variant that lever-
ages Explicit Congestion Notification(ECN) to reduce buffer
usage and speed up flow completion. MPTCP shards data to
different paths to better leverage multi-path networks. This
necessarily involves incorporating domain-specific knowl-
edge about path selection. In all of these TCP variants, as
well as protocols like QCN [2], each flow probes the network
and responds to congestion independently. RackCC, on the
other hand, shares congestion information between different
servers so they may cooperatively arrive at a fairer, more
performant rate. In this, RackCC is similar to earlier efforts
to share congestion information across different connections
within a server [5].

Protocols like XCP [13] and RCP [8] shift congestion con-
trol to the network itself. In these proposals, intermediate

switches adaptively compute the congestion window/sending
rate based on measured rates and observed queuing. In essence,
these protocols use the combined information from all flows
passing through the current switch to provides fast conver-
gence and fast flow completion times. Though they are ef-
fective, they require complex hardware modifications. One
way to view our work is as an approach to provide similar
properties while keeping most of the complex calculations at
the edge. In fact, in RackCC, ToRs only need to provide sim-
ple packet/ECN counters and the ability to perform simple
arithmetic upon demand.

EyeQ [12] is related in that their sender and receiver rate
negotiation proceeds in a similar way to RackCC. However,
EyeQ is designed with a different goal in mind: performance
isolation. Thus, their negotiated rates are intended to emulate
a reserved tunnel on top of which applications will still run
TCP. In addition, they ignore congestion in the middle of the
network and assume the only bottlenecks are the access links.

Finally, centralized approaches like Fastpass [14] explore
the possibility of using centralized controllers to explicitly
schedule packet timing. Unfortunately, these proposals do not
scale to large data centers due to the sheer size of the network
and the burstiness of data center traffic.

7. CONCLUSION
The rack-based architecture of modern data centers pro-

vides a potential opportunity for a better way to handle con-
gestion. Indeed, for some traffic patterns (e.g., those with
high churn, abundant connections, and locality), today’s con-
gestion control algorithms are a poor fit.

In this paper, we instead argue for exploring a different
area of the design space: rack-level congestion control. In
other words, we seek to facilitate cooperation between dis-
parate connections in a topology-aware fashion. We present a
preliminary design based on this design principle. Our sys-
tem, RackCC, tunnels all connections through rack-to-rack
JumboFlows and does so with only a few extra counters at
the ToR switch.

8. REFERENCES
[1] SPDY, whitepaper.

http://www.chromium.org/spdy/spdy-whitepaper.
[2] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha,

R. Pan, B. Prabhakar, and M. Seaman. Data center transport
mechanisms: Congestion control theory and IEEE
standardization. In Allerton 2008.

[3] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,
K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav,
and G. Varghese. CONGA: Distributed Congestion-aware
Load Balancing for Datacenters. In SIGCOMM 2014.

[4] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center
TCP (DCTCP). In SIGCOMM 2010.

[5] H. Balakrishnan, H. Rahul, and S. Sesha. An Integrated
Congestion Management Architecture for Internet Hosts. In
SIGCOMM 1999.

[6] T. Benson, A. Akella, and D. A. Maltz. Network traffic
characteristics of data centers in the wild. In IMC, 2010.

[7] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming
Protocol-independent Packet Processors. SIGCOMM Comput.
Commun. Rev., 2014.

[8] N. Dukkipati. Rate Control Protocol (RCP): Congestion
Control to Make Flows Complete Quickly. PhD thesis.

[9] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur,
J. Kulkarni, G. Ranade, P.-A. Blanche, H. Rastegarfar,
M. Glick, and D. Kilper. ProjecToR: Agile Reconfigurable

Data Center Interconnect. In SIGCOMM, 2016.
[10] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly

high-speed TCP variant. ACM SIGOPS OSR 2008.
[11] V. Jacobson. Congestion Avoidance and Control. SIGCOMM

CCR 1988.
[12] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar,

C. Kim, and A. Greenberg. EyeQ: Practical Network
Performance Isolation at the Edge. In NSDI 2013.

[13] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for
High Bandwidth-delay Product Networks. In SIGCOMM
2002.

[14] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal. Fastpass: A Centralized "Zero-queue" Datacenter
Network. In SIGCOMM 2014.

[15] V. Rao and E. Smith. Facebook’s new front-end server design
delivers on performance without sucking up power.
https://code.facebook.com/posts/1711485769063510/
facebook-s-new-front-end-server-design-delivers-on-
performance-without-sucking-up-power/.

[16] A. Roy, H. Zeng, J. Bagga, G. M. Porter, and A. C. Snoeren.
Inside the Social Network’s (Datacenter) Network. In
SIGCOMM 2015.

[17] Verma, Abhishek and Pedrosa, Luis and Korupolu, Madhukar
and Oppenheimer, David and Tune, Eric and Wilkes, John.
Large-scale cluster management at Google with Borg. In
Eurosys 2015.

[18] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley.
Design, Implementation and Evaluation of Congestion
Control for Multipath TCP. In NSDI 2011.

http://www.chromium.org/spdy/spdy-whitepaper
https://code.facebook.com/posts/1711485769063510/facebook-s-new-front-end-server-design-delivers-on-performance-without-sucking-up-power/
https://code.facebook.com/posts/1711485769063510/facebook-s-new-front-end-server-design-delivers-on-performance-without-sucking-up-power/
https://code.facebook.com/posts/1711485769063510/facebook-s-new-front-end-server-design-delivers-on-performance-without-sucking-up-power/

	Introduction
	The Case for RackCC
	RackCC Design
	JumboFlow Congestion Control
	Subflow Congestion Control
	Fast Start and Fast End

	Evaluation
	Speed of Fast Start
	Effect of Cooperation

	Discussion
	Related Work
	Conclusion
	References

